Reassignment of a rare sense codon to a non-canonical amino acid in Escherichia coli

نویسندگان

  • Takahito Mukai
  • Atsushi Yamaguchi
  • Kazumasa Ohtake
  • Mihoko Takahashi
  • Akiko Hayashi
  • Fumie Iraha
  • Satoshi Kira
  • Tatsuo Yanagisawa
  • Shigeyuki Yokoyama
  • Hiroko Hoshi
  • Takatsugu Kobayashi
  • Kensaku Sakamoto
چکیده

The immutability of the genetic code has been challenged with the successful reassignment of the UAG stop codon to non-natural amino acids in Escherichia coli. In the present study, we demonstrated the in vivo reassignment of the AGG sense codon from arginine to L-homoarginine. As the first step, we engineered a novel variant of the archaeal pyrrolysyl-tRNA synthetase (PylRS) able to recognize L-homoarginine and L-N(6)-(1-iminoethyl)lysine (L-NIL). When this PylRS variant or HarRS was expressed in E. coli, together with the AGG-reading tRNA(Pyl) CCU molecule, these arginine analogs were efficiently incorporated into proteins in response to AGG. Next, some or all of the AGG codons in the essential genes were eliminated by their synonymous replacements with other arginine codons, whereas the majority of the AGG codons remained in the genome. The bacterial host's ability to translate AGG into arginine was then restricted in a temperature-dependent manner. The temperature sensitivity caused by this restriction was rescued by the translation of AGG to L-homoarginine or L-NIL. The assignment of AGG to L-homoarginine in the cells was confirmed by mass spectrometric analyses. The results showed the feasibility of breaking the degeneracy of sense codons to enhance the amino-acid diversity in the genetic code.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Codon reassignment in the Escherichia coli genetic code

Most organisms, from Escherichia coli to humans, use the 'universal' genetic code, which have been unchanged or 'frozen' for billions of years. It has been argued that codon reassignment causes mistranslation of genetic information, and must be lethal. In this study, we successfully reassigned the UAG triplet from a stop to a sense codon in the E. coli genome, by eliminating the UAG-recognizing...

متن کامل

Sense codon emancipation for proteome-wide incorporation of noncanonical amino acids: rare isoleucine codon AUA as a target for genetic code expansion

One of the major challenges in contemporary synthetic biology is to find a route to engineer synthetic organisms with altered chemical constitution. In terms of core reaction types, nature uses an astonishingly limited repertoire of chemistries when compared with the exceptionally rich and diverse methods of organic chemistry. In this context, the most promising route to change and expand the f...

متن کامل

Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli.

Expansion of the genetic code through engineering the translation machinery has greatly increased the chemical repertoire of the proteome. This has been accomplished mainly by read-through of UAG or UGA stop codons by the noncanonical aminoacyl-tRNA of choice. While stop codon read-through involves competition with the translation release factors, sense codon reassignment entails competition wi...

متن کامل

Release Factor One Is Nonessential in Escherichia coli

Recoding a stop codon to an amino acid may afford orthogonal genetic systems for biosynthesizing new protein and organism properties. Although reassignment of stop codons has been found in extant organisms, a model organism is lacking to investigate the reassignment process and to direct code evolution. Complete reassignment of a stop codon is precluded by release factors (RFs), which recognize...

متن کامل

A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes.

The genetic code is the cellular translation table for the conversion of nucleotide sequences into amino acid sequences. Changes to the meaning of sense codons would introduce errors into almost every translated message and are expected to be highly detrimental. However, reassignment of single or multiple codons in mitochondria and nuclear genomes, although extremely rare, demonstrates that the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2015